周小川:用数学规划思维看经济体系
2019年02月01日  |  来源:博鳌亚洲论坛  |  阅读量:6987

多目标之间的冲突。多目标体系在写成目标函数表达式时,可以发现有些目标在优化方向上是一致的,另一些目标可能是相互冲突的,这能够帮助理解两难或者多难问题。过去我国政府曾给货币政策指明有四大目标,分别是低通货膨胀、经济增长、促进就业和国际收支大体平衡,后来又加上了推动改革开放和保持金融稳定。其中,经济增长和促进就业的重叠度是相当高的,有冲突的目标就是经济增长和低通货膨胀,但不是完全冲突。一旦写出目标函数,就可能发现冲突的目标不能够同时达到。“蒙代尔三角”表明,货币政策独立性、汇率稳定和资本自由流动三个目标不能同时达到。我们可以在写目标函数表达式细节的时候,体会出这三个目标是冲突的。当然,“蒙代尔三角”对现实的描述相对简化,实践中的汇率稳定和资本项目可兑换的定位可能并不那么理想化和单纯,但这个思路对决策者很有好处,它告诉决策者对于存在冲突的目标要有所取舍。应当看到,现实中存在不少冲突目标的事,多数情况下是两难决策,蒙代尔是三取二,可能还有四取三、五取四的情况,可以用数学规划及目标函数来理解。

多层次目标协调机制。线性规划可以运用拉格朗日函数,非线性规划可以运用库恩—塔克(Kuhn-Tucker)定理,把一个模型实现最优化所必须达到的条件组列出来,必须达到这组条件才能最优化,而条件组中涉及了拉格朗日乘子,即影子价格。也可以借助影子价格写出对偶模型,把拉格朗日条件改写成最优化目标,把目标写成约束条件组。长期以来,经济学的三部门模型,即政府追求 GDP最大化、企业追求利润最大化、消费者(家庭)追求消费效用最大化,三者存在不同的目标。根据拉格朗日函数和库恩—塔克定理,意味着每个主体都有其自己单独的目标函数,但以分布式供求关系的信息构架和分散决策为代表的市场经济体制,能完全协调这三者不同的目标而融为一体。当然数学模型总有简化,现实描述则不能太简化,尽管如此,用数学规划方法仍可以找出普遍规律。数学规划加上拉格朗日函数、库恩—塔克定理的运用,可以发现多目标协调机制的数学解释是非常清晰的,且可以运用于实践。

约束条件

约束条件在大的分类上有等式约束和不等式约束。等式约束可以体现为经济规律中的恒等式;不等式约束典型的例子就是资源配置。有人说,生产法GDP可能导致盲目扩大生产、产能过剩等问题,但如果把宏观经济模型翻译成数学规划模型,将生产法GDP作为目标函数、支出法GDP作为等式约束条件,也就是要求投资、消费和政府支出加上净出口,最后等于生产法所生产出来的商品,这意味着我们在寻求生产法GDP最大化时,不会发生生产出商品卖不出去的情况。同样,也可以在等式约束里放收入法GDP。总的来说,数学规划在生产法、支出法、收入法GDP中任选一个当目标,其他两个做等式约束条件,最终可以得出三种GDP在市场经济体制上可以不互相冲突。

拉格朗日乘子和拉格朗日函数

拉格朗日问题可以衍生出对偶问题。对偶问题有两个方面:一方面是对偶模型,线性规划中的最大化必然有一个最小化的对偶模型,比如说企业利润最大化,对偶的影子就是成本最小化,所以两个模型之间可以相互翻译、互为影子。另一方面是等式约束和不等式条件约束对应的影子价格,比如在生产要素资源配置优化过程中,某一项要素条件的变化,对于实现目标函数都有一个成本,按经济学讲就是影子价格。因此,约束条件对应了用影子价格衡量的代价。企业多雇一个人,给他的报酬取决于多雇一个人对目标函数实现的边际增量(是边际而不是平均的)。经济学中边际的概念,可以更准确地描述为数学规划测度的影子价格问题。影子价格恰好是线性规划里的拉格朗日乘子。这个思维对经济分析是很有益处的。

拉格朗日函数可以将不同层次的数学规划联系起来。数学规划还有一个有意思的问题是大数学规划模型套小数学规划模型,小数学规划模型还可套更小的数学规划模型,用拉格朗日函数将数学规划问题转为函数形式就当作约束条件来用,对不同变量求导推导出一组优化条件,经济达到这组条件就实现优化配置。要实现优化配置,就要用影子价格做激励机制。顶层数学规划的条件组一部分是由次一层数学规划的拉格朗日函数转化成的。以消费者行为为例,消费者效用最大化是较低层的数学规划,可以优化出消费者效用最大化的行为,而消费者行为的约束条件,即消费者支出小于收入又是从另一个涉及劳动与休闲、储蓄与花销行为的优化模型推出来的,这样就把大的问题和小的行为问题联系起来了。2008年金融危机以后,出现了大量对宏观经济模型的批评,认为缺乏金融机构的行为,偏离现实。过去金融机构行为都被简化掉了,认为在制度条件下有存款就会都转化成贷款,不用考虑金融机构的行为,但危机表明,必须关注恐慌、惜贷等金融机构行为,否则经济分析就会出漏洞。这样,就有必要先构建金融机构自身行为的优化模型,通过拉格朗日函数及其关联,放到顶层的宏观模型中去。

总的来看,数学上还没有真正解决动态规划问题,因此动态规划处理复杂问题相对更困难,可以更多依靠模拟( Simulation)来作比较分析,就像罗马俱乐部把世界几十年后环境资源无法承载的模拟结果展示出来。通过数学建模,能够发现很多问题,比如目标冲突、不可能性问题、对偶问题等,可以开拓思维,有很多研究题目可以继续深入。

此外,理解和运用数学规划也必然会联系到其他一些数学方法和模型。数据的收集、运用及其概念,都离不开经济社会统计及统计模型,经济规律的发现和参数化离不开计量模型;经济行为的描述越来越需要博弈论。搞好宏观经济工作常提到调控,涉及控制系统理论和信息论。以数学模型为基础的经济分析呈现为一片又深又蓝的知识与技能的海洋。 

1 2
回到顶部